If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x-36=0
a = 2; b = 16; c = -36;
Δ = b2-4ac
Δ = 162-4·2·(-36)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{34}}{2*2}=\frac{-16-4\sqrt{34}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{34}}{2*2}=\frac{-16+4\sqrt{34}}{4} $
| 6(3x-1)=12x+24 | | 6(3x-1)=12x+23 | | 4x+x=416 | | 6(3x-1)=12x+22 | | 52t=3 | | 6(3x-1)=12x+13 | | 6(3x-1)=12x+11 | | 6(3x-1)=12x+12 | | 6(3x-1)=12x+10 | | 6(3x-1)=12x+9 | | 6(3x-1)=12x+8 | | 5x-20=8x-4 | | 6(3x-1)=12x+6 | | 6(3x-1)=12x+5 | | 16=2/7x | | 6(3x-1)=12x+3 | | 6(3x-1)=12x+1 | | |x-6|+4=10 | | n^2+2n=60000 | | -4.4(x-3.25)=13.2 | | 6(3x-1)=12x+7 | | 6(3x-1)=12x+4 | | 12x=8x-32 | | 6(3x-1)=12x+2 | | n^2+2n=1000 | | 5/7=p=4.7 | | 7+m=49 | | -4.9x^2+30x-40.4=0 | | 1/3x-24=-16 | | 2.8+10m=8.47 | | 93=7s+16 | | k-8=11.2 |